

Panel Mount PLC

NEW standard: Timer + Counter + Temperature Controller + PLC

From the makers of the first SLIM FPO PLC, Panasonic Electric Works is proud to introduce the industry's first panel mount PLC, the FP-e. This small (DIN $1 / 16$ case) PLC has a built-in bright 3 color LED panel capable of displaying up to 5 digits along with predefined units.

The function keys on the front panel can be used for setting timers, counters, temperature set points, internal bits, regular data points, and can also be used as 16 additional input switches. Up to 6 screens can be programmed, and with our new wizard feature added to our FPWINGR programming software, this is even easier.

The FP-e PLC comes in the following three types

Basic Type - 8 DC input, 5 NPN tran., and 1 relay output; Calendar Timer Type -8 DC input, 5 NPN tran., and 1 relay output; Thermocouple Input Type - 6 DC input, 2 ch. thermocouple, 5 NPN tran., and 1 relay output

Key Features

- RS232C and RS485 Serial Ports
- Modem Remote Operation
- IP66 Protection
- Data Logging*
- Calendar Clock Timer*
- Thermocouple Input**
- Modbus RTU Slave***
- 2 Digital Number Displays
- 4 High Speed Counter up to 10 KHz
- 1 ms Resolution Timers
- 2 Axis Trapezoidal Stepper Control
- 2 High Speed PWM
- PID with Auto Tuning
- Floating Point Math
* For AFPE224305 and AFPE214325
** For AFPE214325 only
*** Currently available for RS485 type

FPe Models

You may sort models by clicking the arrows in the appropriate column. If you are searching for a particular model but can't find it, give our model search utility a try. All downloads have moved to our separate downloads center.

Click one of the links below to view all related models. Models will appear below the links.

- Control Units
- Accessories
- Manuals And Software

Currently viewing: FPe Control Units

Model Name	Power	Pulse Outputs	Thermocouple	Dc Inputs	Npn Outputs	Relay Outputs	Program Size (K)
Sort A V	Sort A V	Sort A V	Sort A V	Sort $\boldsymbol{\sim}$	Sort A V	Sort A V	Sort A V
AFPE214322	24VDC	Yes	Yes	6	5	1	2.7
AFPE214325	24VDC	Yes	Yes	6	5	1	2.7
AFPE224200	12VDC	Yes	No	8	5	1	2.7
AFPE224300	24VDC	Yes	No	8	5	1	2.7
AFPE224302	24VDC	Yes	No	8	5	1	2.7
AFPE224305	24VDC	Yes	No	8	5	1	2.7

FP-e Series

Specification table

Performance specifications

Item				AFPE224300 Standard type (RS232C)	AFPE224302 Standard type (RS485)	AFPE224305 Calendar timer type (RS232C)	AFPE214325 Thermocouple input type (RS232C)	AFPE214322 Thermocouple input type (RS485)
Programming method/Control method				Relay symbol/Cyclic operation				
Number of controllable I/O points			Control unit	14 points [Input: 8, Output: 6 (Tr. NPN: 5/Ry: 1)]			12 points [Input: 6, Output: 6 (Tr. NPN: 5/Ry: 1)]	
			Front switch input	8 points				
Program memory			Built-in memory	Built-in EEP-ROM				
Program capacity				2,720 steps				
Number of instruction			Basic	83				
			High-level	117				
Operation speed				$0.9 \mu \mathrm{~s} / \mathrm{step}$ (Basic instruction)				
I/O update and Base time				Typical 2 ms				
	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \frac{\pi}{\infty} \\ & \underset{\Upsilon}{2} \end{aligned}$	Internal relay (R)		1,008 points (R0 to R62F)				
		Special internal relay (R)		64 points (R9000 to R903F)				
		Timer/Counter (T/C)		144 points (Initial setting: 100 timer points, T0 to T99/44 counter points, C100 to C143 Note 1) Timer range ($1 \mathrm{~ms}, 10 \mathrm{~ms}, 100 \mathrm{~ms}, 1 \mathrm{~s}$): selected by instruction				
		Data register (DT)		1,660 words (DT0 to DT1659)				
		Special data register (DT)		112 words (DT9000 to DT9111)				
		Index regis	rs (IX. IY)	2 points				
Differential points				Unlimited number of points				
Master control relay points (MCR)				32 points				
Number of labels (JP and LOOP)				64 labels				
Number of step ladders				128 stages				
Number of subroutines				16 subroutines				
Number of interrupt programs				7 programs (external: 6, internal 1)				
Self-diagnostic function				Watchdog timer, program syntax check, etc.				
Clock/calendar function ${ }^{\text {Note 2) }}$				Not available		Available (year, month, day, hour, minute, second and day of week). However, this can only be used when a battery has been installed.		Not available
Battery life				Not available		220 days or more (actual usage value: approx. 870 days $\left(25^{\circ} \mathrm{C}\right)$. (Periodic replacement interval: 1 year). (Value applies when no power is supplied at all.)		Not available
Pulse catch input				6 points in total (X0 and X1:50 5 s , X2 to $\mathrm{X} 5: 100 \mu \mathrm{~s}$)				
Interrupt input								
COM. port Note 3)				RS232C	RS485	RS232C	RS232C	RS485
Periodical interrupt				0.5 ms to 30 s				
Constant scan				Available				
Password				Available				
¢	High-speed counter function * The combinations 1 -phase $\times 2$ ch. and 2 -phase $\times 1 \mathrm{ch}$. are also possible for the high-speed counter.			Counter mode: Addition/subtraction (1-phase) Note 4) - Input points: 4 ch. (Max.)				
				- Max. speed: 10 kHz (total of 4 ch.$)$: 5 kHz (total of 4 ch .)	
				- Input contact: X0: count input (ch. 0), X1: count input (ch. 1), X2: reset input Note 5) X3: count input (ch. 2), X4: count input (ch. 3), X5: reset input Note 5)				
				- Min. input pulse width: X0 and X1: $50 \mu \mathrm{~s}$ (10 kHz)				
				Counter mode: 2-phase/individual/direction decision (2-phase) - Input points: 2 ch (Max.)				
				-Max. speed: 2 kHz (total of 2 ch)			: 1 kHz (total of 2 ch.$)$	
				- Input contact: X0: count input (ch. 0), X1: count input (ch. 0), X2: reset input X3: count input (ch. 2), X4: count input (ch. 2), X5: reset input				
				-Min input pulse	0 and X1:50	kHz)	X0 and X1: $100 \mu \mathrm{\mu s}$ (5	kHz)
				X3 and X4: $100 \mu \mathrm{~s}$				
	Pulse output function		Output points	2 independent points (Y0 and Y 1) (No interpolation function)				
			Output frequency	40 Hz to 10 kHz (40 Hz to 5 kHz (YO	-point) Note 6) point)		40 Hz to 5 kHz (1-po 40 Hz to 2.5 kHz (2-p	
	PWM output function		Output points	2 points (Y0 and Y1)				
			Output frequency	Frequency: 0. 15 Hz to 1 kHz Duty: 0.1 \% to 99.9 \%				
$\stackrel{\text { ® }}{ } \times$ Timer				Non-hold type: (all points)				
这	Counter		Non-hold type	From set value to C139				
	Counter		Hold type	4 points (elapsed values) C140 to C143				
	Internal relay		Non-hold type	976 points (R0 to R60F) 61 words (WR0 to WR60)				
			Hold type	32 points (R610 to R62F) 2 words (WR61 to WR62)				
	Data register		Non-hold type	1,652 words (DT0 to DT1651)				
			Hold type	8 words (DT1652 to DT1659)				

Note 1) The proportion of timer points to counter points can be changed using a system register. Note 2) Precision of calendar timer.

At $0^{\circ} \mathrm{C} / 32^{\circ}$ F, less than 200 seconds of error per month
At $25^{\circ} \mathrm{C} / 77^{\circ} \mathrm{F}$, less than 70 seconds of error per month
At $55^{\circ} \mathrm{C} / 131^{\circ} \mathrm{F}$, less than 240 seconds of error per month
Note 3) When using the COM. port for communication, retransmission is recommended The RS232C driver IC for the COM. port conforms completely to EIA/TIA-232E and CCITT V. 28 standards
Note 4) The max. counting speed (10 kHz) is the counting speed with a rated input voltage of 24 V C and an ambient temperature of $25^{\circ} \mathrm{C}$. The counting speed (frequency) will decrease depending on the voltage and temperature.

Note 5) If the unit is equipped with both reset inputs X 0 and $\mathrm{X} 1, \mathrm{X} 2$ serves as the reset input for X 1 .
Note 6) When the positioning control instruction "F168" is performed, the maximum output When the positioning
Note 7) The program, system registers and the hold type area (internal relay, data register, and timer/counter) are backed up by the built-in EEP-ROM.
When a battery is replaced with a new one in the FP-e unit with a calendar timer function, settings can be changed without installing a battery. The data cannot be stored even when the settings are changed using the system register.
Note 8) F180 (SCR) and F181 (DSP) instructions are supported from Control FPWIN GR Ver. 2.2 and FPWIN Pro V 4.1.

FP-e Series

Technical data

General specifications

Item	Description	
Rated voltage	24 V DC	
Operating voltage range	21.6 to 26.4 V DC	
Allowed momentary power off time	10 ms	
Ambient temperature	0 to $+55^{\circ} \mathrm{C}$	
Storage temperature	-20 to $+70^{\circ} \mathrm{C}$	
Ambient humidity	30 to 85% RH (non-condensing)	
Storage humidity	30 to 85% RH (non-condensing)	
Breakdown voltage	$\left.\begin{array}{l}\text { Input terminals (COM, X0 to Xn) } \\ \text { Output terminals (YO to Y4) }\end{array}\right] \prec\left[\begin{array}{l}\text { Power supply terminal, Function earth } \\ \text { Input terminal (A0, A1) } \\ \text { COM. (RS232C) terminal }\end{array}\right.$	500 V AC for 1 minute
	Output terminal (Y5) $]<\left[\begin{array}{l}\text { Power supply terminal, Function earth } \\ \text { Input terminal (COM, X0 to Xn, A0, A1) } \\ \text { COM. (RS232C) terminal }\end{array}\right.$	1500 V AC for 1 minute
	Input terminals (COM, X0 to Xn) $\longleftrightarrow \quad$ Output terminals (YO to Y4)	500 V AC for 1 minute
Insulation resistance	$\left.\begin{array}{l}\text { Input terminals (COM, X0 to Xn) } \\ \text { Output terminals (Y0 to Y5) }\end{array}\right] \leftharpoonup\left[\begin{array}{l}\text { Power supply terminal, Function earth } \\ \text { Input terminal (A0, A1) } \\ \text { COM. (RS232C) terminal }\end{array}\right.$	Min. 100 M (measured with 500 V DC)
	$\text { Input terminals (COM, X0 to } \mathrm{Xn} \text {) } \longleftrightarrow \text { Output terminals (Y0 to Y5) }$	
Vibration resistance	10 to $55 \mathrm{~Hz}, 1$ cycle/min. Double amplitude: $0.75 \mathrm{~mm}, 10 \mathrm{~min}$. on X, Y, and Z axes	
Shock resistance	$98 \mathrm{~m} / \mathrm{s}^{2}$ or more, 4 times on X, Y, and Z axes	
Noise resistance	1000 V (p-p) with pulse widths 50 ns and $1 \mu \mathrm{~s}$ (based on in-house measurements)	
Operating condition	Free from corrosive gases and excessive dust	
Current consumption	200 mA or less (24 V DC)	
Protection	IP66-compliant front section (Only when a rubber packing is used.)	
Mass	Approx. 130 g	

DC input specifications (X0 to X7)

Item		Description
Number of input		8 points (6 points for thermocouple input type)
Insulation method		Optical coupler
Rated input voltage		24 V DC
Operating voltage range		21.6 to 26.4 V DC
Rated input current		Approx. 4.3 mA
Input points per common		8 points/common (6 points/common for thermocouple input type) Either the positive or negative of the input power supply can be connected to common terminal.
ON voltage/ON current		19.2 V or less/4 mA or less
OFF voltage/OFF current		2.4 V or more/1 mA or more
Input impedance		Approx. 5.1 k (X0, X1) Approx. 5.6 k (X2 to X7)
Response time	OFF to ON	50μ s or less (X0, X1) Note 1)
		$100 \mu \mathrm{~s}$ or less (X2 to X5) Note 1)
		2 ms or less (X6, X7)
	ON to OFF	50μ s or less (X0, X1) Note 1)
		$100 \mu \mathrm{~s}$ or less (X2 to X5) Note 1)
		2 ms or less (X6, X7)
Operating mode indicator		LCD display (I/O monitor mode)

Note 1) \quad X0 through X 5 are inputs for the high-speed counter and have a fast response time. If used as normal inputs, you should insert a timer in the program as chattering and noise may be interpreted as an input signal. Also, the above specifications apply when the rated input voltage is 24 V DC and the temperature is $25^{\circ} \mathrm{C}$.

- Thermocouple input specifications

Item	Description
Number of input	2 points $(\mathrm{CH0}: \mathrm{WX1}, \mathrm{CH} 1: \mathrm{WX} 2)$
Temperature sensor type	Thermocouple type K
Input range	-30.0 to $\left.300.0^{\circ} \mathrm{C} * 1\right)\left(-22\right.$ to $\left.572^{\circ} \mathrm{F}\right)$
Accuracy	$\pm 0.5 \% \mathrm{FS} \pm 1.5^{\circ} \mathrm{C}\left(\mathrm{FS}=-30\right.$ to $\left.300^{\circ} \mathrm{C}\right)$
Resolution	$0.1^{\circ} \mathrm{C}$
Conversion time	$250 \mathrm{~ms} / 2 \mathrm{CH} * 2)$
Insulation method	Between internal circuit and thermocouple input circuit: noninsulated $* 3)$ Between CH and CH 1 of thermocouple input: PhotoMOS insulation
Detection function of wire disconnection	Available

*1) Temperature can be measured up to $330^{\circ} \mathrm{C}\left(626^{\circ} \mathrm{F}\right)$. When the measured temperature exceeds $330^{\circ} \mathrm{C}\left(626^{\circ} \mathrm{F}\right)$ or the thermocouple wiring is disconnected, "K20000" is written o the register.
*2) Temperature conversion for thermocouple input is performed every 250 ms . The conversion data is updated on the internal data register after the scan is completed
*3) The internal circuit and thermocouple input circuit are not insulated. Therefore, use the nongrounding type thermocouples and sheath tubes.

FP-e Series

Technical data

Transistor NPN output specifications (For Y0 to Y4)

Item		Description
Insulation method		Optical coupler
Output type		Open collector
Rated load voltage		5 to 24 V DC
Operating load voltage range		4.75 to 26.4 V DC
Max. load current		0.5 A
Max. surge current		1 A
Output points per common		5 points/common
OFF state leakage current		$100 \mu \mathrm{~A}$ or less
ON state voltage drop		1.5 V or less
Response time	OFF to ON	50μ s or less (For Y0 and Y1), 1 ms or less (For Y2, Y3 and Y4)
	ON to OFF	$50 \mu \mathrm{~s}$ or less (For Y0 and Y1), 1 ms or less (For Y2, Y3 and Y4)
External power supply (For driving internal circuit)	Voltage	21.6 to 26.4 V DC
	Current	$6 \mathrm{~mA} /$ point (For Y0 and Y1) $3 \mathrm{~mA} /$ point (For Y2, Y3, and Y4)
Surge absorber		Zener diode
Operating indicator		LCD display (I/O monitor mode)

COM. port communication specifications *1)

Item	Description	
COM. port type	RS232C *2)	RS485
Isolation status with the internal circuit	Non-isolated	Isolated
Transmission distance	15 m	1200 m
Baud rate *3)	$\begin{aligned} & 300,600,1200,2400, \\ & 4800,9600,19200 \mathrm{bit} / \mathrm{s} \end{aligned}$	9600,19200 bit/s *4)
Communication method	Half-duplex	
Synchro system	Synchronous communication method	
Transmission format	Stop bit: 1 bit/2 bit	
	Parity: Not available/Available (Odd number/Even number)	
	Data length $7 \mathrm{bit} / 8 \mathrm{bit}$	
	Beginning code: STX available/STX not available	
	Ending code: CR/CR+LF/not available/ETX	
Data output order	Starting from 0 bits per character	
No. of connected units	-	99 *5) *6)
Communication mode	- General-purpose communication - Computer link	

(mm)

*1) When communicating between FP-e and other devices, it is recommneded to perform resend processing.
*2) For RS232C wiring, be sure to use shielded wires for higher noise immunity.
*3) Set the baud rate of RS485 with the FP-e system register and FP-e internal switch.
4) Whe saud rate of RS232C with
*4) When sending a command from the FP-e is completed in RS485 communication, send a
 $600 \mathrm{bit} / \mathrm{s}: 2 \mathrm{~ms}$ or longer $19200 \mathrm{bit} / \mathrm{s}: 1 \mathrm{~ms}$ or longer received the command.
-
5) received he command.

When our C-NET Adapter or RS485 device other than recommended is connected in the
system, the maximum connection number is limited to 32 units.
*) For a RS485 converter on the computer side, SI-35 (from LINE EYE Co., Ltd.) is ecommended
When SI- 35 is used in the system, up to 99 units can be connected

Wiring diagram

